

Journal of Molecular Catalysis A: Chemical 101 (1995) 17-24

RhCl(PPh₃)₃ catalyzed hydrosilylation of styrene and phenylacetylene with phenylsilanes

Jubaraj B. Baruah¹, Kohtaro Osakada^{*}, Takakazu Yamamoto^{*}

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan

Received 27 September 1994; accepted 13 March 1995

Abstract

Reaction of styrene with Ph_2SiH_2 catalyzed by $RhCl(PPh_3)_3$ (<0.3 mol%) proceeds smoothly in THF to give $Ph_2SiH(CH_2CH_2Ph)$ in 77–89% yields although the reaction is accompanied by formation of $Ph_2SiH(CH=CHPh)$, ethylbenzene, and Ph_3SiH in small amounts. Similar reaction in toluene also gives a mixture of $Ph_2SiH(CH_2CH_2Ph)$, $Ph_2SiH(CH=CHPh)$, ethylbenzene, and Ph_3SiH with lower yield of the hydrosilylation product than the reaction in THF. Reaction of styrene with Ph_2SiD_2 catalyzed by $RhCl(PPh_3)_3$ in toluene gives a mixture of these products which are partly deuterated on the non-aromatic hydrogens. The ¹H NMR spectrum of the products indicates complete deuterium scrambling on the hydrogen atoms of styrene and the phenylsilanes prior to or during the reaction. Further reaction of $Ph_2SiH(CH_2CH_2Ph)$ with HSPh catalyzed by $RhCl(PPh_3)_3$ gives $Ph_2Si(SPh)(CH_2CH_2Ph)$. Hydrosilylation of styrene with $PhSiH_3$ catalyzed by $RhCl(PPh_3)_3$ is much slower than the reaction with Ph_2SiH_2 . Hydrosilylation of phenylacetylene with $PhSiH_3$ catalyzed by 0.1 mol% of $RhCl(PPh_3)_3$ gives $PhSiH_2(CH=CHPh)$ in 67% as the sole reaction product. Similar reaction of 1-octyne gives $PhSiH_2[CH=CH(CH_2)_5Me]$. These hydrosilylation products are converted into thiolato substituted organosilane through $RhCl(PPh_3)_3$ catalyzed dehydrogenative condensation with HSAr ($Ar = C_6H_5$, C_6H_4 -p-Me, C_6H_4 -p-Me).

Keywords: Alkene; Alkyne; Arylsilanes; Hydrosilylation; Rhodium; Thiol

1. Introduction

Transition metal complex catalyzed hydrosilylation of alkenes, alkynes as well as dienes provides a useful tool for synthesis of organosilicon compounds [1]. Since discovery of hydrosilylation of C=C double bond catalyzed by Rh complex [2], reactions of alkenes with alkyl-and arylsilanes to lead to Si–C bond formation have been examined by using several Rh complexes as the catalysts [3–11]. RhCl(PPh₃)₃ catalyzed hydrosilylation of 1-alkene or styrene proceeds smoothly under mild conditions, but the reaction is often accompanied by hydrogenation and/or dehydrogenative silulation of olefins as shown in Scheme SCHEME [4-6,8,11].

Most previous studies on RhCl(PPh₃)₃ catalyzed hydrosilylation of alkenes have used trialkylsilanes as the substrate. The reaction of styrene with Et₃SiH at 65°C in toluene was reported to give a mixture of hydrosilylation products, Et₃SiCH₂CH₂Ph (23%) and Et₃SiCH(Me)Ph (10%), as well as ethylbenzene in 40% yield [8]. Similar hydrosilylation with diorganosilanes would give different results since reactivity and selectivity of similar hydrosilyla-

^{*} Corresponding author. Fax. no. (+81-459245276).

¹ On leave from Gauhati University, Guwahati 781014, India.

^{1381-1169/95/\$09.50} @ 1995 Elsevier Science B.V. All rights reserved SSDI 1381-1169(95)00058-5

Scheme 1. RhCl(PPh₃)₃ catalyzed reactions of 1-alkene with hydrosilane.

tion of alkenes catalyzed by Pt complexes varies depending on the kind of organosilane used. However, there have been few reports on detailed results of the reactions of alkenes with diorganosilanes catalyzed by RhCl(PPh₃)₃. In this paper we report that the reaction using Ph₂SiH₂ at room temperature in THF gives the hydrosilylation product through anti-Markovnikov addition in much higher yield and selectivity than the already reported reaction using trialkylsilane and that the reaction of phenylacetylene with PhSiH₃ gives *trans*-PhSiH₂(CH=CHPh) exclusively. Results of deuterium labeling experiments for the former reaction are also described.

2. Results and discussion

2.1. RhCl(PPh₃)₃ catalyzed hydrosilylation of styrene with Ph_2SiH_2

RhCl(PPh₃)₃ catalyzed hydrosilylation of styrene with Ph₂SiH₂ in THF proceeds smoothly at room temperature to give Ph₂SiH(CH₂CH₂Ph) as the major product. Table 1 shows results of the hydrosilylation under various conditions. The product Ph₂SiH(CH₂CH₂Ph) is isolated in 77– 89% when the reaction is carried out in THF in high substrate to catalyst ratios (>350) (runs 1– 3). Another possible hydrosilylation product, Ph₂SiH[CH(CH₃)Ph], is not formed at all. Formation of several minor products, $Ph_2SiH(CH=CHPh)$, Ph_3SiH and ethylbenzene, is also observed. The reaction with lower substrate to catalyst ratio (100) gives the by-products in higher yields (run 4) although the reaction is completed in a shorter period.

$$PhCH=CH_{2} + Ph_{2}SiH_{2} \rightarrow in \text{ toluene or THF}$$

$$PhCH_{2}CH_{2}Si(H)Ph_{2}$$

$$+ PhCH=CHSi(H)Ph_{2} + PhCH_{2}CH_{3} + Ph_{3}SiH \qquad (1)$$

Reaction of styrene with Ph_2SiH_2 in toluene gives a mixture of the above compounds although the yield of the hydrosilylation product is lower than that in THF (runs 5 and 6).

Fig. 1 shows the ¹H NMR spectrum of the mixture of the reaction carried out in toluene- d_8 in a sealed NMR tube. Peaks due to the SiH and CH₂ hydrogens of $Ph_2SiH(CH_2CH_2Ph)$ are observed at 5.02, 2.70 and 1.40 ppm with splitting due to HH coupling. Peaks due to $Ph_2SiH(CH=CHPh)$ through dehydrogenative silvlation is not observed although the spectrum at the initial stage of the reaction shows the presence of the compound. The unsaturated product seems to undergo hydrogenation to give the saturated silane under conditions. The presence of the Ph₂SiH(CH=CHPh) in the products of reactions (run 5 and 6) in tblr1 in spite of the absence of the diphenyl(styryl)silane in the reaction of Fig. 1 is attributed to difference in the reaction

conditions. The former reaction under Ar stream causes elimination of H₂, while effective hydrogenation of Ph₂SiH(CH=CHPh) by H₂ evolved during the reaction is observed in the latter reaction carried out in a sealed NMR tube.

The singlet peak at 5.62 ppm in Fig. 1 is assigned to Ph₃SiH formed during the reaction. Previously RhCl(PPh₃)₃ has been reported to catalyze conversion of Ph₂SiH₂ at 80°C or at room temperature into a mixture of organosilicon compounds containing Ph₂SiHSiHPh₂ and Ph₃SiH [12]. Hydrosilylation of methyl methacrylate catalyzed by $RhCl(PPh_3)_3$ at room temperature also gave the disilane as a by-product although the reaction details are not shown in the report [8]. Formation of disilane catalyzed by Rh complexes was reported in the reaction of Et₂SiH₂ in the presence of $RhCl(PPh_3)_3$ at room temperature [13]. However, the ¹H NMR spectrum of the present reaction mixture shows the absence of Ph₂SiHSiHPh₂ that should show the SiH hydrogen peak at 5.16 ppm [6]. Ph₃SiH in the reaction mixture seems to be formed through disproportionation of Ph₂SiH₂ through phenyl group migration catalyzed by the Rh complex although the counterpart PhSiH₃ is not observed in the reaction mixture. Rapid disappearance of PhSiH₃ through hydrosilylation of the olefin does not account for the absence of PhSiH₃ in the final reaction mixture since the reaction of styrene with PhSiH₃ cata-

Table 1

RhCl(PPh₃)₃ catalyzed hydrosilylation of styrene with Ph₂SiH₂ ^a

lyzed by RhCl(PPh₃)₃ is much slower than that with Ph_2SiH_2 (vide infra).

Fig. 2 shows the change in the amounts of starting materials and products in equimolar reaction of styrene and Ph₂SiH₂ catalyzed by RhCl(PPh₃)₃ in toluene. Amounts of styrene and Ph₂SiH₂ decrease rapidly during the initial 100 min. After 100 min consumption of styrene as well as formation of $Ph_2SiH(CH_2CH_2Ph),$ Ph₂SiH(CH=CHPh), and ethylbenzene become much slower than before. On keeping the reaction

Product (mmol) ^b Run Substrate (mmol) Conditions PhCH=CH2 Ph₂SiH₂ time (h) Ph₂SiH(CH₂CH₂Ph) ^c Ph₂SiH(CH=CHPh)^d PhCH₂CH₃^d Ph₃SiH^d solvent 1 7.5 7.1 THF 24 5.9 (79) [83] 0.42(6)0.30 [4] 2 5.5 20 5.5 THF 4.9 (89) [89] 0.06(1)[1] 0.36(7) 0.19 [3] 3 3.5 3.5 THF 3.5 2.7 (77) [77] 0.06(2)[2]0.15 [4] 4 1.4 1.0 THF 0.5 0.55 (39) [55] 0.04 (4) [4] 0.26 (26) 0.13 [13] 5 1.0 1.0 toluene 2.0 0.39 (39) [39] 0.29 (29) [29] 0.28 (28) 0.21 [21]

0.13 (13) [13]

^a Reactions were carried out under Ar stream in the presence of RhCl(PPh₃)₃ (10 mg, 0.010) in the solvent (2 ml) at 25°C.

0.47 (47) [47]

^b Yields based on styrene and on Ph₂SiH₂ are shown in parenthesis and in brackets, respectively.

toluene 3.5

° Isolated yields.

1.0

6 ^f

^d Yields by ¹H NMR. See Experimental, Section 4.2, for details.

^e Formation was confirmed, but the yield was not determined.

1.0

^f The reaction was carried out by addition of Ph₂SiH₂ to the solution containing styrene and the catalyst with stirring.

(b)

ppm

0.15 [15]

Fig. 2. Change of the amounts of starting materials and products during the RhCl(PPh₃)₃ catalyzed reaction of styrene with Ph₂SiH₂ in toluene- d_8 . See Section 4.2 for the reaction conditions.

mixture for a further 24 h, partial hydrogenation $Ph_2SiH(CH=CHPh)$ of into $Ph_2SiH(CH_2CH_2Ph)$ is observed. All these observations suggest that Ph₂SiH₂ causes hydrosilylation, dehydrogenative silvlation as well as hydrogenation of styrene rapidly in the initial period of the reaction and that formation of Ph₂SiH(CH₂CH₂Ph) is partly attributed to gradhydrogenation initially formed ual of Ph₂SiH(CH=CHPh).

RhCl(PPh₃)₃ catalyzed hydrosilylation of 1alkenes with trialkylsilane has been already reported to give alkane as a by-product from hydrogenation of the alkene. Hydrogen source is believed to be dihydrogen evolved through dehydrogenative silylation. On the other hand, Ph₂SiH₂ is able to provide hydrogen atoms to the alkene also through dehydrogenative condensation to give disilane or oligosilanes catalyzed by the Rh complex [12,14]. In order to explore hydrogen source of the hydrogenation in the present study several reactions were examined as shown below.

Products in the reaction in toluene- d_8 do not contain deuterium at the CH₂ and CH₃ position. Ethylbenzene formed from the reaction in the presence of excess D₂O in THF- d_8 is not deuterated although hydrosilylation product is not well characterized due to further reaction of Si–H bond

with D_2O under the conditions. The results indicate that hydrogen source in the hydrogenation is not the solvent nor H₂O in the mixture but hydrogens contained in the substrate molecules. Reaction of styrene with Ph₂SiD₂ catalyzed by $RhCl(PPh_3)_3$ in toluene- d_8 also gives a mixture of (2-phenylethyl)diphenylsilane, ethylbenzene and triphenylsilane. Fig. 3 shows the ¹H NMR spectrum of the reaction mixture showing the peaks due to SiH, PhCH₂ (or PhCHD), and SiCH₂ SiCHD) hydrogens of (2-phenyle-(or thyl)diphenylsilane in a 43:100:96 peak area ratio which agrees with the ratio of hydrogens in the molecule (1:2:2). The above peaks except for that of SiH are with complicated splitting due to both HH and HD coupling. Peak area ratio between CH_2 (or CHD) and CH_3 (CH_2D or CHD_2) hydrogens in ethylbenzene (71:100) is also similar to the ratio of the hydrogen atoms in the molecule (2:3). The peak due to ¹H of Ph₃SiH is observed at 5.62 ppm. The ratio between peak areas of phenyl hydrogens and total peak areas of the SiH, CH_2 (or CHD), and CH_3 (CH_2D or CHD_2) hydrogens of the products agrees with that calculated from the amount of the starting materials. All the results indicate that non-aromatic hydro-

Fig. 3. The ¹ H NMR spectrum (400 MHz, toluene- d_8) of the reaction mixture of styrene with Ph₂SiD₂ in the presence of RhCl(PPh₃)₃ catalyst (1 mol%) after 24 h at 25°C. Peaks with (a), (b), and (c) are due to (2-phenylethyl)diphenylsilane, ethylbenzene, and triphenylsilane, respectively. Peaks with asterisk are not assigned.

Scheme 2. Plausible pathways for RhCl(PPh₃)₃ catalyzed deuterium scrambling $(Rh = Rh(PPh_3)_n;$ only pathways via β -insertion are shown although α -insertion also occurs during the reaction).

gens of the substrates are scrambled rapidly prior to or during the reaction although the hydrogen source in the hydrogenation is not determined unambiguously.

Scheme SCHEME shows plausible pathways for the deuterium scrambling reaction. Path (i) involves initial formation of deuteriorhodium(I) intermediate that undergoes insertion of styrene into the Rh–D bond and ensuing β -hydrogen elimination.

Reactions of organosilane with chloro-iridium and -platinum complexes to give the corresponding hydride complexes have been already reported [14]. Reversible insertion of styrene into Rh–D bond of deuteriorhodium(III) intermediate followed by β -hydrogen elimination in path (ii) is also plausible. Deuteration of CH and CH₂ group of styrene in Scheme SCHEME prior to hydrosilylation or hydrogenation accounts for deuterium distribution in the hydrosilylation product. Deuterium labeling in both CH₂ and CH₃ positions of ethylbenzene is due to the deuteration of styrene as well as to reaction of styrene with D₂. Previously RhCl(PPh₃)₃ catalyzed dehydrogenative condensation of Si–H group of organosilane with thiol was reported to give the corresponding thiolatosilane accompanied by H₂ evolution under mild conditions [15,16]. In order to examine reactivity of the SiH group of Ph₂SiH(CH₂CH₂Ph), reaction with benzenethiol was examined. The reaction proceeds smoothly in the presence of RhCl(PPh₃)₃ catalyst to give Ph₂Si(SPh)(CH₂CH₂Ph) in 91% yield.

$$Ph_2SiH(CH_2CH_2Ph)$$

$$+ \text{HSPh} \xrightarrow{\text{RhCl(PPh_3)_3 cat}} \text{Ph}_2\text{Si(SPh)}(\text{CH}_2\text{CH}_2\text{Ph})$$
(2)

Direct reaction of Ph_2SiH_2 , styrene and HSPh in a 1:1:1 molar ratio in the presence of RhCl(PPh₃)₃ (1 mol%) gives Ph₂Si(SPh)(CH₂CH₂Ph) in 33% yield (by ¹H NMR peak area), while the reaction mixture contains unreacted styrene (30%), ethylbenzene (39%) and Ph₂SiH(SPh) (67%) also. Similar reaction in a 1:1:2 molar ratio leads quantitative

Scheme 3. RhCl(PPh_3)_3 catalyzed reaction of styrene with Ph_2SiH_2 in the presence of HSPh.

formation of ethylbenzene and $Ph_2Si(SPh)_2$. Ethylbenzene seems to be formed by reaction of styrene with H_2 evolved in the dehydrogenative condensation catalyzed by the Rh complex. These results suggest that dehydrogenative condensation of Ph_2SiH_2 with HSPh occurs more easily than the hydrosilylation of styrene with Ph_2SiH_2 . Scheme SCHEME summarizes the reaction products of Ph_2SiH_2 and styrene in the presence of HSPh. $Ph_2Si(SPh)(CH_2CH_2Ph)$ seems to be formed both through hydrosilylation of styrene with $Ph_2SiH(SPh)$ and through condensation of $Ph_2SiH(CH_2CH_2Ph)$ and HSPh.

2.2. $RhCl(PPh_3)_3$ catalyzed hydrosilylation of styrene and phenylacetylene with PhSiH₃

Hydrosilylation of styrene with PhSiH₃ proceeds much more slowly than the reaction with Ph₂SiH₂ and gives only negligible amounts of hydrosilylated products after 24 h at room temperature. However, reaction of phenylacetylene with PhSiH₃ in the presence of 0.1 mol% of the substrates proceeds smoothly at room temperature to cause exclusive formation of the hydrosilylation product PhSiH₂(CH=CHPh).

$$PhC=CH + PhSiH_{3} \rightarrow trans-PhSiH_{2}(CH=CHPh)$$
(3)

The ¹H NMR spectrum of the product shows peaks due to a vinylic hydrogen at 6.6 ppm whose large J(HH) value (19 Hz) agrees with the trans structure. The absence of the cis isomer in the reaction mixture suggests cis addition of Si-H bond to C=C triple bond in the reaction. The high regio-and stereoselectivity of the present reaction is remarkable when compared with the hydrosilylation of phenylacetylene with trialkylsilanes catalyzed by Rh(acac)(C_2H_4)₂ giving mixtures of the regio and stereo isomers already reported [9].

Similar hydrosilylation of 1-octyne with PhSiH₃ also gives PhSiH₂[CH=CH(CH₂)₅CH₃] although isolation of the product from the reaction mixture was not feasible due to contamination with PhSiH₃ and Ph₂SiH₂ contained in the reaction mixture. The ¹H NMR spectrum of the reaction mixture indicates the absence of the isomers of the product such as *cis*-PhSiH₂[CH=CH(CH₂)₅CH₃],

PhSiH₂[C(=CH₂)(CH₂)₅CH₃] as well as PhSiH₂[CH₂CH=CH(CH₂)₄CH₃]. Ojima and his co-workers have established cis addition of trialkylsilane to 1-hexyne catalyzed by Rh carbonyl complexes [17].

Reactions of PhSiH₂(CH=CHPh) with HSAr (Ar = C_6H_5 , C_6H_4 -p-Me, C_6H_4 -o-Me) in the presence of RhCl(PPh₃)₃ catalyst give thiolato group substituted products, PhSi(SAr)₂(CH₂CH₂Ph), in high yields.

$$PhSiH_{2}(CH=CHPh) + 2HSAr \rightarrow$$

$$PhSi(SAr)_{2}(CH_{2}CH_{2}Ph) \qquad (4)$$

The C=C double bond of the substrates is reduced by H_2 evolved from the condensation of SiH and SH groups during the reactions.

3. Conclusion

RhCl(PPh₃)₃ catalyzed hydrosilylation of styrene with Ph₂SiH₂ in THF gives the product with higher selectivity than the already reported reactions using trialkylsilane as the substrate. Reaction of phenylacetylene with PhSiH₃ leads formation of PhSiH₂(CH=CHPh) with high regio-and stereoselectivity. These hydrosilylation products are converted into the thiolato group substituted derivatives through condensation with HSAr in the presence of $RhCl(PPh_3)_3$ catalyst.

4. Experimental

4.1. General procedure, materials, and measurement

All the manipulations of the complexes were carried out under nitrogen or argon atmosphere using standard Schlenk technique. The solvents were dried in a usual manner, distilled, and stored under argon. Ph₂SiH₂, PhSiH₃, styrene, phenyl-acetylene, 1-octyne, and thiols were purchased from Tokyo Kasei Co. NMR spectra (¹H and ¹³C) were recorded on JEOL EX-90 and EX-400 spectrometers. Elemental analyses were carried out by Yanagimoto Type MT-2 CHN autocorder. GC measurement was carried out on a Shimadzu GC-8A gas chromatograph equipped with a 2 m column packed with SE-30.

4.2. Hydrosilylation of styrene with Ph_2SiH_2

To a THF (2 ml) solution of RhCl(PPh₃)₃ (10 ml)mg, 0.011 mmol) was added a mixture of Ph₂SiH₂ (1.3 g, 7.1 mmol) and styrene (0.78 g, 7.5 mmol) with stirring. The stirring was continued for 24 h at room temperature under Ar stream. A small portion (3 vol%) of the resulting red solution was analyzed by H NMR after removal of the solvent and dissolving the product in CDCl₃. Peaks due to $Ph_2SiH(CH_2CH_2Ph)$, $Ph_2SiH(CH=CHPh)$ (29%), ethylbenzene (28%), and Ph₃SiH (21%)were observed. The NMR yields of the latter three compounds were determined by relative peak area to dioxane as the internal standard. The remaining solution was passed through a short Florisil column to remove the catalyst. The liquid product thus obtained was further purified by column chromatography over neutral alumina to give $Ph_2SiH(CH_2CH_2Ph)$ (1.7 g, 79%). Anal. calcd. for C₂₀H₂₀Si: C, 83.3; H, 7.0. Found: C, 83.3; H, 6.7. ¹H NMR (CDCl₃) $\delta = 7.8-7.0$ (m, 15H, C_6H_5), 4.9 (t, J=5 Hz, 1H, SiH), 2.8 (m, 2H,

CH₂), 1.4 (m, 2H, CH₂). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃) $\delta = 144.2$, 135.1, 134.1, 129.6, 128.3, 127.8, 125.7, 30.4, 14.0.

The hydrosilylation in an NMR tube was carried out as follows. A 5 mm ϕ NMR tube containing RhCl(PPh₃)₃ (1 mg, 0.001 mmol) was sealed with a rubber septum under Ar atmosphere. Toluene-d₈ (ca. 0.4 ml), Ph₂SiH₂ (18 mg, 0.098 mmol) and styrene (10 mg, 0.096 mmol) were injected in this order with a syringe through septum. After shaking to dissolve the catalyst the reaction mixture was kept at room temperature. Amounts of the products and unreacted substrates were determined periodically by peak area ratio of the compounds relative to that of the solvent.

4.3. Reaction of $Ph_2SiH(CH_2CH_2Ph)$ with PhSH by $RhCl(PPh_3)_3$ catalyst

То а toluene (2 ml) solution of Ph₂SiH(CH₂CH₂Ph) (290 mg, 1.0 mmol) and PhSH (110 mg, 1.0 mmol) was added RhCl(PPh₃)₃ (14 mg, 0.015 mmol). After vigorous hydrogen evolution ceased the reaction mixture was stirred for 4 h at room temperature. The reaction mixture was diluted with hexane (50 ml) and passed through a short Florisil column to remove the catalyst. Evaporation of the solvent under vacuum gives Ph₂Si(SPh)(CH₂CH₂Ph) as a viscous liquid (360 mg, 91%). Anal. calcd. for C₂₆H₂₄SSi: C, 78.7; H, 6.1. Found: C, 78.7; H, 6.4. ¹H NMR (CDCl₃) $\delta = 7.9-6.7$ (m, 20H, C₆H₅), 2.8 (m, 2H, CH₂), 1.5 (m, 2H, CH₂).

4.4. Hydrosilylation of phenylacetylene with $PhSiH_3$

To a mixture of PhSiH₃ (110 mg, 10 mmol) and phenylacetylene (1.2 g, 12 mmol) was added RhCl(PPh₃)₃ (11 mg, 0.012 mmol) with stirring. After stirring the reaction mixture for 18 h at room temperature the product was diluted with hexane (100 ml), and the catalyst was removed by passing a short Florisil column. The following distillation of the product gave *trans*-PhSiH₂(CH=CHPh) (1.4 g, 67%). Anal. calcd. for C₁₄H₁₄Si: C, 80.0; H, 6.7. Found: C, 80.8; H, 6.7. ¹H NMR (CDCl₃) δ =7.8–7.0 (m, 11H, C₆H₅ and CH=), 6.6 (dt, 1H, *J*=19 Hz, 3 Hz, CH=), 4.8 (d, 2H, *J*=3 Hz, SiH). ¹³C{¹H} NMR (CDCl₃) δ =149.9, 135.8, 130.1, 129.1, 128.8, 128.4, 127.1, 126.9, 119.5.

Reaction of 1-octyne with PhSiH₃ was carried out analogously. The product after work-up similar to above reaction contains a mixture of PhSiH₂[CH=CH(CH₂)₅CH₃] and small amounts of PhSiH₃ and Ph₂SiH₂ as revealed by the ¹ H NMR spectra. ¹H NMR (CDCl₃) δ =7.7-7.0 (m, 5H, C₆H₅), 6.3 (dt, 1H, J=18, 6 Hz, CH=), 5.7 (dtt, 1H, J=18, 3, 1 Hz, Si-CH=), 4.5 (d, 2H, J=3 Hz, SiH), 2.2 (m, 2H, CH₂), 1.5-0.8 (m, 11H, CH₂ and CH₃).

4.5. $RhCl(PPh_3)_3$ catalyzed reaction of $PhSiH_2(CH=CHPh)$ with aromatic thiol

To a well stirred toluene (2 ml) solution of PhSiH₂(CH=CHPh) (210 mg, 1.0 mmol) and PhSH (220 mg, 2.0 mmol) was added RhCl(PPh₃)₃ (10 mg, 0.011 mmol) at room temperature. After stirring at room temperature for 24 h the resulting red solution was eluted through Florisil (2 g) short column to remove the catalyst. Evaporation of the solvent from the eluant gave PhSi(SPh)₂(CH₂CH₂Ph) as colorless liquid (400 mg, 93%). Anal. calcd. for C₂₆H₂₄S₂Si: C, 72.8; H, 5.6. Found: C, 73.8; H, 6.0. ¹H NMR (CDCl₃) δ =7.8–6.8 (m, 20H, C₆H₅), 2.5 (m, 2H, CH₂), 1.2 (m, 2H, CH₂).

Reactions with other thiols were carried out analogously. PhSi(SC₆H₄-*p*-Me)₂(CH₂CH₂Ph) was obtained in 88% yield. Anal. calcd. for C₂₈H₂₈S₂Si: C, 73.7; H, 6.1. Found: C, 72.9; H, 6.0. ¹H NMR (CDCl₃) δ =7.8–6.8 (m, 18H, aromatic), 2.5 (m, 2H, CH₂), 2.1 (s, 6H, CH₃), 1.2 (m, 2H, CH₂). PhSi(SC₆H₄-*o*-Me)₂(CH₂CH₂Ph) was obtained in 93% yield. Anal. calcd. for C₂₈H₂₈S₂Si: C, 73.7; H, 6.1. Found: C, 73.4; H, 6.0. ¹H NMR (CDCl₃) δ =7.7–6.9 (m, 18H, aromatic), 2.5 (m, 2H, CH₂), 2.3(s, 6H, CH₃), 1.4 (m, 2H, CH₂).

Acknowledgements

This work was partly supported by a Grant-in-Aid from the Ministry of Education, Science and Culture, Japan and by Asahi Glass Foundation. Authors are grateful to Dr. Munetaka Akita in our institute for kind donation of Ph_2SiD_2 .

References

- Reviews for metal complexes catalyzed hydrosilylation: (a) J.F. Harrod and A. Chalk, in I. Wender and P. Pino (Eds.), Organic Syntheses via Metal Carbonyls, Vol. II, Wiley, New York, 1977, p. 673. (b) J.L. Spier, Adv. Organomet. Chem., 17 (1979) 407. (c) I. Ojima, in S. Patai and Z. Rappoport (Eds.), The Chemistry of Organic Silicon Compounds, Wiley, Chichester, 1989, p. 1479. (d) T. Hiyama and T. Kusumoto, in B.M. Trost and I. Fleming (Eds.), Comprehensive Organic Synthesis, Pergamon Press, Oxford, 1991, Vol. 8, p. 763. (e) B. Marciniec and J. Gulínski, J. Organomet. Chem., 446 (1993) 15.
- [2] J. Rejhon and J. Hetflejs, Collect. Czech. Chem. Commun., 40 (1975) 3680.
- [3] (a) A. Millan, E. Towns, and P.M. Maitlis, J. Chem. Soc., Chem. Commun. (1981) 673. (b) A, Millan, M.-J. Fernandez, P. Bentz, and P.M. Maitlis, J. Mol. Catal., 26 (1984) 89.
- [4] (a) A. Onopchenko, E.T. Sabourin, and D.L. Beach, J. Org. Chem., 48 (1983) 5101. (b) J. Org. Chem., 49 (1984) 3389.
- [5] I. Ojima, T. Fuchikami, and M. Yatabe, J. Organomet. Chem., 260 (1984) 335.
- [6] M.F. Lappert and R.K. Maskell, J. Organomet. Chem. 264 (1984) 217.
- [7] H. Nagashima, K. Tatebe, T. Ishibashi, J. Sakakibara, and K. Itoh, Organometallics, 8 (1989) 2495.
- [8] R. Skoda-Földes, L. Kollár, and B. Heil, J. Organomet. Chem., 408 (1991) 297.
- [9] F. Wada, S. Abe, N. Yonemaru, K. Kikukawa, and T. Matsuda, Bull. Chem. Soc. Jpn., 64 (1991) 1701.
- [10] M.P. Doyle, K.G. High, C.L. Nesloney, T.W. Clayton, Jr. and J. Lin, Organometallics, 10 (1991) 1225.
- [11] F. Kakiuchi, K. Nogami, N. Chatani, Y. Seki, and S. Murai, Organometallics, 12 (1993) 4748.
- [12] I. Ojima, S. Inaba, T. Kogure, and Y. Nagai, J. Organomet. Chem., 55 (1973) C7.
- [13] K.A. Brown-Wenseley, Organometallics, 6 (1987) 1590.
- [14] A.G. Chalk, J. Chem. Soc., Chem. Commun. (1969) 1207.
- [15] I. Ojima, M. Nihonyanagi, and Y. Nagai, J. Organomet. Chem., 50(1973) C26. (b) Y. Nagai, I. Ojima, Japan Kokai (1975) 7475537; Chem. Abstr., 82 (1975) 57923a.
- [16] J.B. Baruah, K. Osakada, and T. Yamamoto, submitted.
- [17] I. Ojima, N. Clos, R.J. Donovan, and P. Ingallina, Organometallics, 9 (1990) 3127.